An algebraic proof of Bogomolov-Tian-Todorov theorem

نویسندگان

  • Donatella Iacono
  • Marco Manetti
  • MARCO MANETTI
چکیده

We give a completely algebraic proof of the Bogomolov-Tian-Todorov theorem. More precisely, we shall prove that if X is a smooth projective variety with trivial canonical bundle defined over an algebraically closed field of characteristic 0, then the L∞-algebra governing infinitesimal deformations of X is quasi-isomorphic to an abelian differential graded Lie algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bogomolov–pantev Resolution, an Expository Account

Before the work cited above, and that of Abramovich and de Jong [1] (appearing at roughly the same time) the only proof of this theorem was as a corollary of the famous result of Hironaka [5]. These new proofs were inspired by the recent work of de Jong [6], which Bogomolov and Pantev combine with a beautiful idea of Belyi [2] “simplifying” the ramification locus of a covering of P by successiv...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Multiples of Subvarieties in Algebraic Groups over Finite Fields

Let X be a subvariety of a commutative algebraic group G over Fq such that X generates G. Then ⋃ φ∈EndG φ(X(Fq)) = G(Fq). If G is semiabelian, this can be strengthened to ⋃ n≥1 nX(Fq) = G(Fq), and there is a density-1 set of primes S such that X(Fq) projects surjectively onto the S-primary part of G(Fq). These results build on work of Bogomolov and Tschinkel. 1. Statements of results This intro...

متن کامل

THE DYNAMICAL MANIN-MUMFORD CONJECTURE AND THE DYNAMICAL BOGOMOLOV CONJECTURE FOR ENDOMORPHISMS OF (P1)n

We prove Zhang’s Dynamical Manin-Mumford Conjecture and Dynamical Bogomolov Conjecture for dominant endomorphisms Φ of (P). We use the equidistribution theorem for points of small height with respect to an algebraic dynamical system, combined with an analysis of the symmetries of the Julia set for a rational function.

متن کامل

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009